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Faraday's Law states that the voltage induced in a single turn of wire wrapped around a magnetic core is equal to the 
rate of change of the magnetic flux enclosed by that wire.  One of Maxwell's equations (generalizing Faraday's Law) 
asserts that the line integral of the Dot Product of the induced voltage vector and the differential path vector along a 
single turn of wire wrapped around a magnetic core equals the surface integral of the Dot Product of the rate of 
change of a magnetic flux density vector within that turn of wire and a differential surface integrated over the area 
enclosed by that wire. This version of the law applies for stationary surfaces. This is sufficiently complicated to make 
many engineers look for an alternate career path.

This is, however, a very powerful assertion. If you know the rate of change of magnetic flux, you can compute the 
voltage that flux will induce in a wire that encircles it. The equation also allows you to predict the rate of change of flux 
in a core from the external voltage applied to a winding wrapped around that core.

Solving the integral expression for the induced voltage in terms of the 
changing magnetic flux and generalizing to N turns. Note the minus sign that 
indicates that the induced voltage will oppose the applied voltage that is 
causing the flux change. 
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Let's now look at the expression involving the applied voltage that creates the changing magnetic field. The minus 
sign will be missing this time. Let's also make some simplifying assumptions that will be useful in evaluating 
practical magnetic devices.

Faraday's Law with the voltage source replaced 
with an equivalent constant voltage set equal to the 
average value of the source (over the analysis 
interval). Note that ∆φ  is φP-P assuming that the 
voltage does not change polarity during the analysis 
interval
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∆φ = ∆Bave*AC where   ∆Bave is the average value of BP-P for our 
purposes. We are dealing in MKS units initially. This expression assumes 
all the flux is confined to the core since we are using the core area. 
Average means averaged over the core cross-sectional area.
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Taking Eq. 3 and substituting 1/(2*f) = ∆t for the 
special case of a sinewave voltage. Result is 
same as squarewave (Eq. 4) as long as Vave is 
used!
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The equation for a squarewave does not change 
when Vrms is substituted for Vave since the RMS 
and Average values of a squarewave are the same 
(over a half-cycle of the waveform).
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Taking the above CGS equation and substituting 
1/(2*f) = ∆t for the special case of a squarewave 
voltage.

Now we will look at two common voltage waveforms (sinewave and squarewave) that arise frequently in magnetics 
analysis.  We will assume, for simplicity,  that there is no DC offset in the applied voltage for these cases. It will be 
noted that P-P flux swings (in opposite directions) will occur over each half-cycle of the applied voltage. The equations 
will focus on analysis over the positive half-cycle of the applied voltage in each case. We will drop the ave subscript in 
the following equations but it will be understood that we are always talking about average value of peak flux density.

Some general comments on the above equation are in order. The analysis computes the average value of peak flux 
density assuming that the flux is confined to the core. The errors in this assumption will be small only when the 
magnetic path is completely composed of very high permeability material and the device is operated to preclude core 
saturation. The addition of a core gap will lower the effective permeability of the path and degrade the accuracy of this 
analysis. As long as gap length is kept small relative to total path length, this effect will be minimized. Certain core 
types have an effective core cross-sectional area smaller than the actual core area due to construction from strips or 
stampings that are interleaved with nonmagnetic material. The equations should always use the effective core area 
found by multiplying actual area times the stacking factor. All practical magnetic cores, torroids for example, have a 
magnetic path length that varies over the cross-section of the core. These devices will exhibit peak flux densities that 
are highest where the path length is shortest (inside edge in the case of a torroid) and core saturation must be 
avoided for this worst case. Many core types also exhibit a cross-sectional area that varies along the path length. 
There are equations that have been developed to analyze the various core types and arrive at effective values for core 
parameters to use in magnetics design equations to account for geometric factors. If you are asking yourself how 
important this flux density gradient is; remember that if you have one foot in boiling water and the other foot frozen in a 
block of ice, on the average you are comfortable. This is one of the many reasons people do not design for the full flux 
density capability of the core. Others include temperature rise and the need for design reserve for cases where the 
circuit applies a transient to the magnetic device containing more than normal applied Volt*Seconds. Designs that 
have the possibility of DC current in the windings must be evaluated based on the peak flux due to all effects. 
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Converting from MKS to CGS units since there are 
104 Gauss / Tesla and 104 cm2 / m2 and 
104 * 104 = 108. This is the general expression 
for the average value of peak flux density. 
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Combining this new correction factor with the 4 in the denominator of 
Equation 6.

4
0.900316316

4.44288294=

The final correction factor for the sinewave case.
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Evaluating the integral (step 3)
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Evaluating the integral (step 2)
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The average value of a sine-wave averaged 
over 1/2 cycle (0 to π radians) is the integral 
(area under the curve) divided by ∆x which is 
π radians for a half cycle.
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The ratio of Vrms / Vpk for a sinewave is well 

known as 
1
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be derived below.
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Taking Eq. 3 and substituting 1/(2*f) = ∆t 
for the special case of a sinewave voltage 
where Vrms is used, requires a correction factor
since rms and ave are different for a sinewave 
(over a half-cycle of the waveform).



The previously developed expressions for special voltage waveshapes can be substituted for the 
voltage dependent term in Eq. 9. 
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(Eq. 9)

When an inductor is subjected to a DC current and an AC voltage, the total peak flux density is the 
sum of two components (Eq. 3 & Eq. 8).
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Converting from MKS to CGS since there are 
104 Gauss / Tesla and 104 cm2 / m2 and 
104 * 104 = 108.
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When inductance is constant over the current range of interest (MKS). There are 
certain specialized cases where this is not the desired behavior but it holds for 
the vast majority of cases.

This is the definition of inductance.L N
dφ
di
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The presence of DC current adds a bit of additional complexity.

We now can see why the equations for peak flux density in a magnetic device depend on the waveshape of the 
applied voltage. We also know, from the above discussion, that flux density varies over the core cross-sectional 
area and we are only looking at the average value with this analysis. Any design that applies a voltage waveform 
that can contain a DC component will also be subjected to a phenomenon known as flux-walking but that is a topic 
for another analysis.
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(Eq. 7)
Final expression for the sine-wave case 
with voltage expressed as an RMS value.


